Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 21(8): 2851-2854, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30945870

RESUMO

Luteolide is a 10-membered aliphatic macrolactone, (4 R,8 S,9 S)-4,8-dimethylundecan-9-olide ((-) -17), released by the femoral gland of males of the mantellid frog Gephyromantis luteus. Its structure was established using NMR, MS, and chiral GC and confirmed by stereoselective synthesis of different stereoisomers. Among the approximately 20 current macrolides known from the Mantellidae, luteolide is the first example of a volatile macrolide furnishing three stereogenic centers and an ethyl side chain.


Assuntos
Macrolídeos/síntese química , Macrolídeos/isolamento & purificação , Feromônios/síntese química , Feromônios/isolamento & purificação , Compostos Orgânicos Voláteis/síntese química , Compostos Orgânicos Voláteis/isolamento & purificação , Animais , Anuros , Catálise , Masculino , Estrutura Molecular , Oxirredução , Estereoisomerismo
2.
European J Org Chem ; 2018(20-21): 2651-2656, 2018 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-30078994

RESUMO

Some amphibians use chemical signals in addition to optical and acoustical signals to transmit information. Males of mantellid frogs from Madagascar and hyperoliid frogs from Africa emit complex, species- and sex-specific bouquets of volatiles from their femoral or gular glands. We report here on the identification, synthesis, and determination of the absolute configuration of a macrocyclic lactone occurring in several species of both families, (S)-3,7,11-dodec-6,10-dien-12-olide (S-14, frogolide). Macrolides are a preferred compound class of frog volatiles. Nevertheless, frogolide is the first macrocyclic lactone obviously derived from the terpene pathway, in contrast to known frog macrolides that are usually formed via the fatty acid biosynthetic pathway.

3.
J Nat Prod ; 80(9): 2572-2582, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28836773

RESUMO

Macrolides are a relatively common structural motif prevalent in Nature. However, the structures of these large ring lactones have been relatively difficult to elucidate via NMR spectroscopy due to the minute amounts of compounds that are sometimes obtainable from natural sources. Thus, GC-MS analysis of individual macrolactones has become the method of choice for the structural identification of these compounds. Here we discuss the mass spectrometric behavior of aliphatic macrolides, evaluating spectra from numerous compounds of various ring size, including derivatives containing methyl branches as well as double bonds. The specific fragmentation of these macrolactones under electron impact conditions allows for the development of a general rule set aimed at the identification of similar compounds by mass spectrometry. In addition, the mass spectra of dimethyl disulfide adducts of unsaturated macrolides are discussed. The mass spectra of almost 50 macrolides are presented.


Assuntos
Dissulfetos/química , Macrolídeos/química , Feromônios/química , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular
4.
PeerJ ; 5: e3689, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828277

RESUMO

BACKGROUND: Chemical signals are widely used in the animal kingdom, enabling communication in various social contexts, including mate selection and the establishment of dominance. Femoral glands, which produce and release waxy secretions into the environment, are organs of central importance in lizard chemical communication. The Galápagos marine iguana (Amblyrhynchus cristatus) is a squamate reptile with a lek-mating system. Although the lekking behaviour of marine iguanas has been well-studied, their potential for sexual communication via chemical cues has not yet been investigated. Here we describe the diversity of the lipophilic fraction of males' femoral gland secretions among 11 island populations of marine iguanas, and compare it with the composition of its sister species, the Galápagos land iguana (Conolophus subcristatus). We also conducted behavioural observations in marine iguana territorial males in order to explore the possible function of these substances in the context of male dominance in leks. METHODS: Femoral secretions were analysed by gas chromatography coupled to mass spectrometry (GC-MS), and chromatography with a flame ionisation detector (GC-FID) in order to characterise the lipophilic composition. To understand the potential role of femoral secretions in marine iguana intraspecific communication, territorial males were sampled for their femoral glands and monitored to record their head bob rate-a territorial display behaviour in males-as well as the number of females present in their leks. RESULTS: We found that the gland secretions were composed of ten saturated and unsaturated carboxylic acids ranging in chain length between C16 and C24, as well as three sterols. Cholesterol was the main compound found. Intriguingly, land iguanas have a higher diversity of lipophilic compounds, with structural group of lipids (i.e. aldehydes) entirely absent in marine iguanas; overall the chemical signals of both species were strongly differentiated. Lipid profiles also differed among populations of marine iguanas from different islands, with some islands demonstrating a high diversity of lipophilic compounds (i.e. full spectra of compounds), and others lacking one or more compounds. Among the compounds most frequently found missing were 11- and 13-eicosenoic acids. Gland secretions of males with a better body condition and with a higher dominance status (i.e. those accompanied by females and with higher head bob display) were proportionately richer in C20-unsaturated fatty acids (11-eicosenoic acid). DISCUSSION: Land and marine iguanas strongly diverged in their chemical composition of the femoral glands likely due to ecological differences between both species. Despite that marine iguana populations varied in their femoral gland composition that was not related to their genetic structure. Our results indicated that 11-eicosenoic acid may play an important role in intraspecific chemical communication in marine iguanas.

5.
Beilstein J Org Chem ; 12: 2731-2738, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144343

RESUMO

The contents of the gular glands of the male African reed frog Hyperolius cinnamomeoventris consist of a mixture of aliphatic macrolides and sesquiterpenes. While the known macrolide gephyromantolide A was readily identified, the structure of another major component was suggested to be a tetradecen-13-olide. The synthesis of the two candidate compounds (Z)-5- and (Z)-9-tetradecen-13-olide revealed the former to be the naturally occurring compound. The synthesis used ring-closing metathesis as key step. While the Hoveyda-Grubbs catalyst furnished a broad range of isomeric products, the (Z)-selective Grubbs catalyst lead to pure (Z)-products. Analysis by chiral GC revealed the natural frog compound to be (5Z,13S)-5-tetradecen-13-olide (1). This compound is also present in the secretion of other hyperoliid frogs as well as in femoral glands of male mantellid frogs such as Spinomantis aglavei. The mass spectra of the synthesized macrolides as well as their rearranged isomers obtained during ring-closing metathesis showed that it is possible to assign the location of the double bond in an unsaturated macrolide on the basis of its EI mass spectrum. The occurrence of characteristic ions can be explained by the fragmentation pathway proposed in the article. In contrast, the localization of a double bond in many aliphatic open-chain compounds like alkenes, alcohols or acetates, important structural classes of pheromones, is usually not possible from an EI mass spectrum. In the article, we present the synthesis and for the first time elucidate the structure of macrolides from the frog family Hyperoliidae.

6.
Org Biomol Chem ; 12(25): 4318-23, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24848489

RESUMO

Dimethylsulfoniopropionate (DMSP) is a versatile sulfur source for the production of sulfur-containing secondary metabolites by marine bacteria from the Roseobacter clade. (34)S-labelled DMSP and cysteine, and several DMSP derivatives with modified S-alkyl groups were synthesised and used in feeding experiments that gave insights into the biosynthesis of sulfur volatiles from these bacteria.


Assuntos
Metionina/metabolismo , Roseobacter/metabolismo , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo , Enxofre/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Metionina/biossíntese , Padrões de Referência , Compostos de Sulfônio/síntese química , Compostos de Sulfônio/química , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...